Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Leukoc Biol ; 112(2): 339-346, 2022 08.
Article in English | MEDLINE | ID: covidwho-1772730

ABSTRACT

Multiple questions about SARS-CoV-2 humoral and cellular immunity remain unanswered. One key question is whether preexisting memory T or B cells, specific for related coronaviruses in SARS-CoV-2-unexposed individuals, can recognize and suppress COVID-19, but this issue remains unclear. Here, we demonstrate that antibody responses to SARS-CoV-2 antigens are restricted to serum samples from COVID-19 convalescent individuals. In contrast, cross-reactive T cell proliferation and IFN-γ production responses were detected in PBMCs of around 30% of donor samples collected prepandemic, although we found that these prepandemic T cell responses only elicited weak cTFH activation upon stimulation with either HCoV-OC43 or SARS-CoV-2 NP protein. Overall, these observations confirm that T cell cross-reactive with SARS-CoV-2 antigens are present in unexposed people, but suggest that the T cell response to HCoV-OC43 could be deficient in some important aspects, like TFH expansion, that might compromise the generation of cross-reactive TFH cells and antibodies. Understanding these differences in cellular responses may be of critical importance to advance in our knowledge of immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Viral , Cross Reactions , Humans , Immunity, Humoral , SARS-CoV-2
2.
Front Immunol ; 12: 755891, 2021.
Article in English | MEDLINE | ID: covidwho-1674329

ABSTRACT

The immune response promoted by SARS-CoV-2 vaccination is relevant to develop novel vaccines and optimized prevention strategies. We analyzed the adaptive immunity in healthy donors (HD) and convalescent individuals (CD), before and after administering BNT162b2 vaccine. Our results revealed specific changes in CD4+ T cell reactivity profile in vaccinated HD and CD, with an increase in S1 and S2 positive individuals, proportionally higher for S2. On the contrary, NCAP reactivity observed in HD and CD patients was no longer detectable after vaccination. Despite the substantial antibody response in CD, MPro-derived peptides did not elicit CD4+ lymphocyte activation in our assay in either condition. HD presented an increment in anti-S and anti-RBD IgG after first dose vaccination, which increased after the second vaccination. Conversely, anti-S and anti-RBD IgG and IgA titers increased in already positive CD after first dose administration, remaining stable after second dose inoculation. Interestingly, we found a strong significant correlation between S1-induced CD4+ response and anti-S IgA pre-vaccination, which was lost after vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adult , Cells, Cultured , Convalescence , Female , Healthy Volunteers , Humans , Immunization, Secondary , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , T-Cell Antigen Receptor Specificity , Vaccination
3.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Article in English | MEDLINE | ID: covidwho-1344986

ABSTRACT

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Flow Cytometry/methods , Antigens, Viral/immunology , COVID-19/immunology , High-Throughput Screening Assays , Humans , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests
4.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Article in English | MEDLINE | ID: covidwho-950362

ABSTRACT

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Subject(s)
B-Lymphocytes/immunology , COVID-19/pathology , Immunoglobulins/blood , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , COVID-19/immunology , Complement C3/analysis , Complement C4/analysis , Complement C5/analysis , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Lymphocyte Count , Lymphopenia/immunology , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology
5.
J Immunol ; 205(11): 3130-3140, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-910337

ABSTRACT

Currently, there is a need for reliable tests that allow identification of individuals that have been infected with SARS-CoV-2 even if the infection was asymptomatic. To date, the vast majority of the serological tests for SARS-CoV-2-specific Abs are based on serum detection of Abs to either the viral spike glycoprotein (the major target for neutralizing Abs) or the viral nucleocapsid protein that is known to be highly immunogenic in other coronaviruses. Conceivably, exposure of Ags released from infected cells could stimulate Ab responses that might correlate with tissue damage and, hence, they may have some value as a prognostic indicator. We addressed whether other nonstructural viral proteins, not incorporated into the infectious viral particle, specifically the viral cysteine-like protease, might also be potent immunogens. Using ELISA tests, coating several SARS-CoV-2 proteins produced in vitro, we describe that COVID-19 patients make high titer IgG, IgM, and IgA Ab responses to the Cys-like protease from SARS-CoV-2, also known as 3CLpro or Mpro, and it can be used to identify individuals with positive serology against the coronavirus. Higher Ab titers in these assays associated with more-severe disease, and no cross-reactive Abs against prior betacoronavirus were found. Remarkably, IgG Abs specific for Mpro and other SARS-CoV-2 Ags can also be detected in saliva. In conclusion, Mpro is a potent Ag in infected patients that can be used in serological tests, and its detection in saliva could be the basis for a rapid, noninvasive test for COVID-19 seropositivity.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/metabolism , Coronavirus Infections/blood , Cysteine Proteases/metabolism , Nucleocapsid Proteins/metabolism , Pneumonia, Viral/blood , Saliva/metabolism , Adult , Aged , COVID-19 , Female , HEK293 Cells , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL